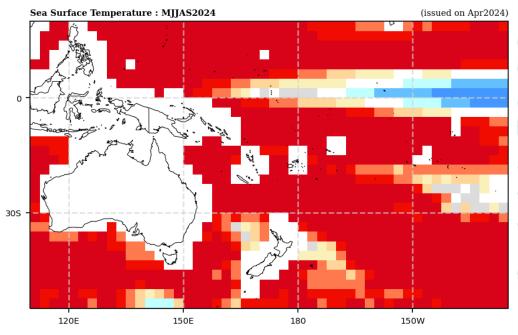
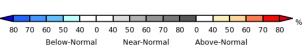


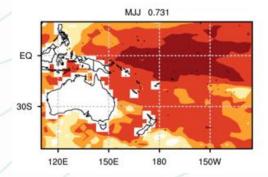
Ocean temperature, Coral Bleaching and Sea level

[Grant Smith (BoM), Zulfikar Begg (SPC), John Marra (NOAA) and Ben Noll (NIWA)]

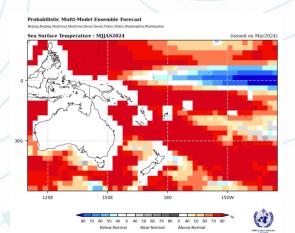


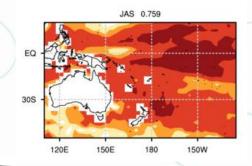


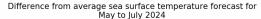
WMO-MME

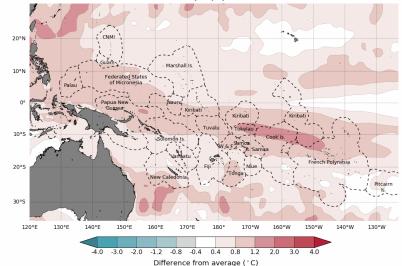

Probabilistic Multi-Model Ensemble Forecast

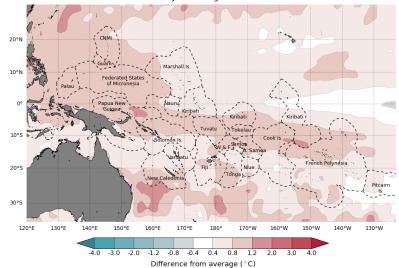
Beijing, CMCC, ECMWF, Exeter, Melbourne, Montreal, Offenbach, Seoul, Tokyo, Toulouse, Washington





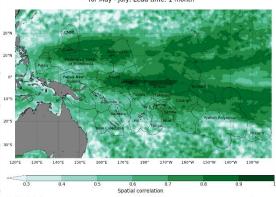



Skill


ACCESS-S: SST Anomalies

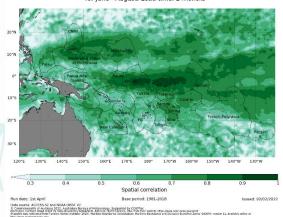
Base period: 1981-2018
Model: ACCESS-52
Model: ACCESS-62
Commonwealth of Australia 2024, Australian Bureau of Meteorology

Difference from average sea surface temperature forecast for June to August 2024

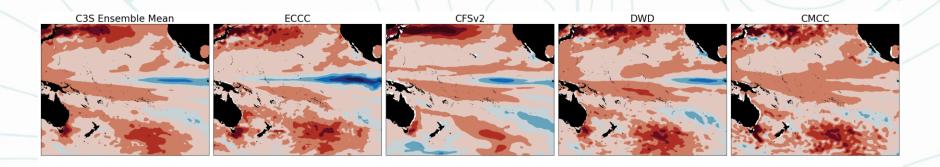


Moder, ACLESS-52

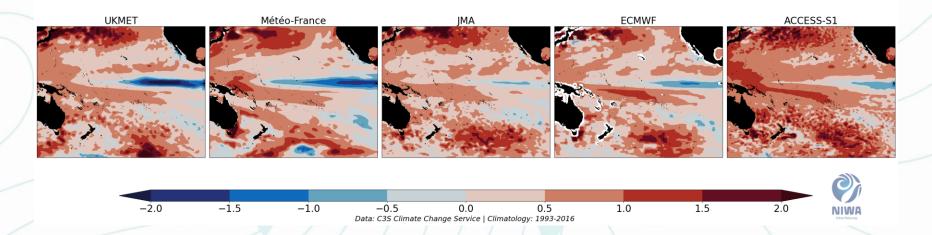
© Commonwealth of Australia 2024, Australian Bureau of Meteorology


State of the Commonwealth of Australia Control Marie Bureau of Meteorology

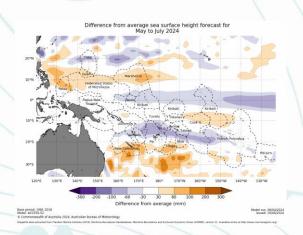
Spatial correlation of seasonal sea surface temperature anomaly for May - July. Lead time: 1 month

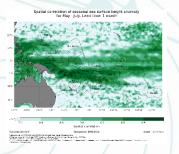


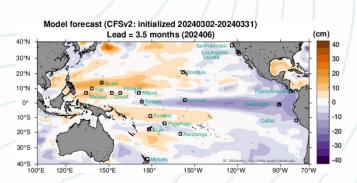
Skill

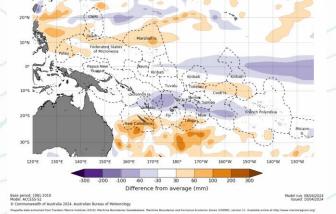

Spatial correlation of seasonal sea surface temperature anomaly for June - August. Lead time: 2 months

NIWA Model Comparison

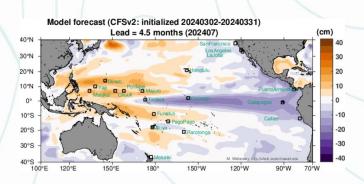



2024-05 to 2024-07 SST Anomalies




Sea Level Anomaly

Skill



Difference from average sea surface height forecast for June to August 2024

Highest Tides

Betio, Kiribati

10 highest tides for 2024		
Date	Time	Height (m)
10-Mar	16:52	2.98
11-Feb	17:51	2.98
10-Feb	17:12	2.97
11-Mar	17:29	2.96
19-Sep	5:00	2.95
18-Sep	4:23	2.95
18-Oct	16:54	2.95
21-Aug	5:25	2.94
17-Oct	16:17	2.93
12-Feb	18:29	2.9

Honiara, Solomon Is.

10 high	10 highest tides for 2024		
Date	Time	Height (m)	
11-May	4:25	1.03	
13-Apr	5:30	1.03	
14-Apr	5:50	1.02	
12-May	4:50	1.02	
18-Nov	16:02	1.02	
10-May	4:01	1.02	
19-Nov	16:30	1.01	
16-Dec	15:13	1	
12-Apr	5:14	1	
17-Dec	15:48	1	

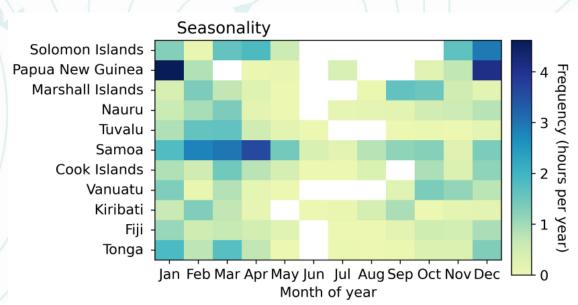
Apia, Samoa

	10 high	est tides	for 2024
1	Date	Time	Height (m)
1	10-Mar	18:21	1.59
1	10-Feb	18:41	1.57
-1	8-Sep	5:52	1.57
1	11-Feb	19:30	1.57
1	11-Mar	19:10	1.57
(9-Mar	17:32	1.57
1	9-Sep	6:40	1.56
4	17-Oct	17:54	1.56
1	18-Oct	18:44	1.55
2	21-Aug	7:02	1.55

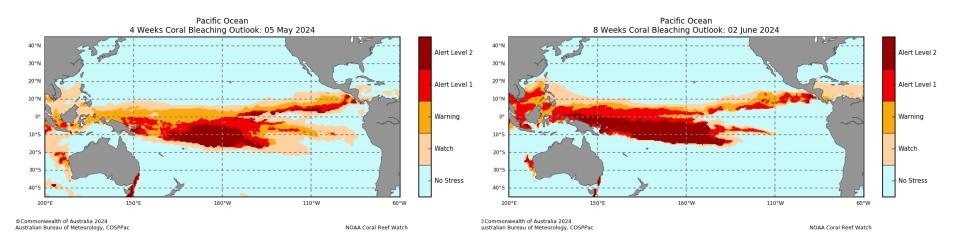
Pohnpei, FSM

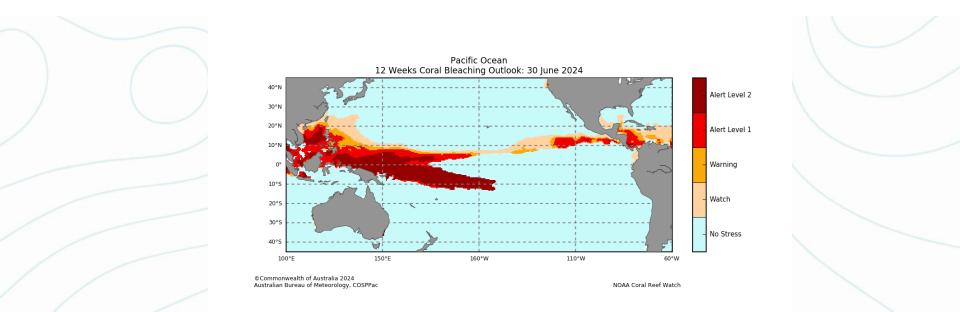
10 highest tides for 2024		
Date	Time	Height (m)
10-Feb	15:50	1.63
11-Feb	16:26	1.61
09-May	3:31	1.6
16-Nov	15:11	1.59
12-Jan	15:57	1.59
13-Jan	16:36	1.59
10-Mar	15:32	1.59
17-Nov	15:45	1.59
10-May	4:03	1.58
09-Feb	15:14	1.58

Majuro, FSM

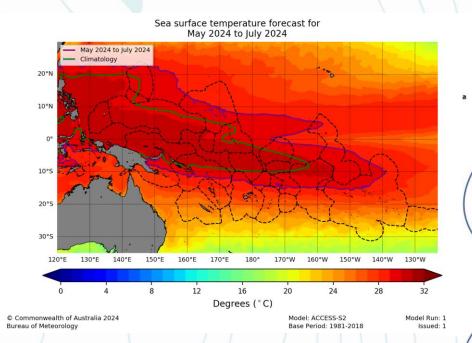

		400
10 highe	est tides 1	or 2024
Date	Time	Height (m)
10-Mar	16:40	2.28
11-Mar	17:16	2.28
11-Feb	17:38	2.26
10-Feb	17:00	2.23
19-Sep	4:48	2.22
18-Oct	16:43	2.21
12-Feb	18:15	2.21
18-Sep	4:12	2.21
10-Apr	5:10	2.2
09-Mar	16:03	2.19

Nauru


10 high	est tides	for 2024
Date	Time	Height (m)
11-Feb	17:46	2.74
10-Feb	17:08	2.73
10-Mar	16:48	2.72
18-Oct	16:52	2.69
11-Mar	17:25	2.68
21-Aug	5:21	2.67
16-Nov	16:32	2.67
18-Sep	4:21	2.66
15-Nov	15:54	2.65
17-Oct	16:17	2.65

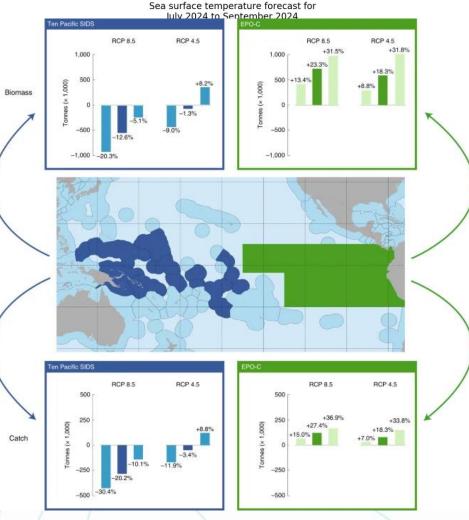

Niue

10 highest tides for 2024		
Date	Time	Height (m)
18-Oct	20:46	1.49
19-Oct	21:43	1.49
16-Nov	20:27	1.48
15-Nov	19:30	1.48
17-Oct	19:50	1.47
20-Sep	22:05	1.47
17-Nov	21:22	1,46
10-Feb	20:34	1.46
19-Sep	21:09	1.46
14-Nov	18:33	1.45



Coral Bleaching (NOAA)

ACCESS-S: Fisheries Convergence zone



Pathways to sustaining tuna-dependent Pacific Island economies during climate change

Johann D. Bell , Inna Senina. Timothy Adams. Olivier Aumont. Beatriz Calmettes. Sangaalofa Clark.

Morgane Dessert. Marion Gehlen. Thomas Gorgues. John Hampton. Quentin Hanich. Harriet HardenDavies. Steven R. Hare. Glen Holmes. Patrick Lehodey. Matthieu Lengaigne. William Mansfield. Christophe
Menkes, Simon Nicol. Yoshitaka Ota. Coral Pasisi, Graham Pilling. Chis Reid. Espen Ronneberg. ... Peter
Williams + Show authors

Nature Sustainability 4, 900-910 (2021) Cite this article

Summary

- SSTs likely to be above average over broadscale regions in the west and southwest Pacific.
- La Niña-like cold tongue emerging across equatorial Pacific, although there is a spread across the models in the strength of negative anomalies.
- Lower than normal sea levels are forecast across central to eastern equatorial Pacific, and a band from Solomon Islands to French Polynesia.
- Higher than normal sea levels emerging in Western Warm Pool regions such as Palau, FSM, RMI, PNG, and Solomon Is.
- Many Pacific Island countries experience lower tides in June/July, however there are tides in the top ten in September/October.
- Coral bleaching alerts are forecast to be high in central Pacific in upcoming 4 weeks, and then move towards the Western Warm Pool region in 8 to 12 weeks but remain high near the dateline.
- The fisheries convergence zone is forecast to be displaced much further eastward along tropical Pacific in the upcoming seasons even though SSTs are cooler in central and eastern equatorial Pacific.